Effective passivation of quasi-2D perovskites enabled by π -conjugated planar molecules

MinJae Kim, Himchan Cho* Department of Materials Science and Engineering, KAIST

Contents

- Introduction
- Isomer-based investigation
 - Geometric effect
 - Molecular orbital effect
- Structural effect
- Device demonstration

Introduction

Defect passivation

Effective passivation of the undercoordinated Pb²⁺ ions is the quintessential priority to boost stability and to allay non-radiative recombination of an exciton

Introduction

Problem

- Recently, owing to their excellent carrier mobility, passivating agents with π-conjugation have been highlighted as flawless alternatives.
- However, there have not been general rules for anticipating the passivation capability of a planar molecule

Goal

This work aims to reveal the design strategy of planar molecules that may exhibit good passivating capability, thereby enabling efficacious discovery

Observation

Photoluminescence intensity was increased upon 46-DBDB treatment and changed diminutively upon 28-DBDB addition while absorption spectra showed marginal change.

Observation

46-DBDB in perovskite film showed diminished C-Br stretching peak intensity compared to the pure molecule while 28-DBDB in perovskite film showed the same absorption profile as the molecule *per se*

Observation

The C-Br peak of the 46-DBDB molecule disappears when it comes into quasi-2D perovskite

Hypotheses

- 1. 46-DBDB somehow was not included in the perovskite film
- 2. 46-DBDB underwent hydrolysis and *in-situ* furnished HBr molecules.
- 3. 46-DBDB effectively passivated halide vacancies in the film

Hypothesis 1

46-DBDB somehow was not included in the final perovskite film

J. Mol. Struct. 380.1-2 (1996): 1-14.

Hypothesis 2

46-DBDB underwent hydrolysis and lose C-Br bonding

- In general, aromatic sp² C-Br hardly undergoes hydrolysis
- No O-H peak was observed
- \rightarrow Structural change in the 46-DBDB would be negligible

Mechanistic scrutinization

Proposition 1

Ascended PL intensity is attributed to the geometrical effect.

 \rightarrow The geometrical effect is insufficient to fully explain the difference

Mechanistic scrutinization

Proposition 2

Potential passivating moieties should contribute to the HOMO of the molecule.

28-DBDB

46-DBDB

Mechanistic scrutinization

Alternative explanation

Electrostatic potential (ESP) would play a crucial role in passivation capability

Positive

→ The ESP-based narrative cannot duly explain the superiority of the 46-DBDB over the 28-DBDB

HDT demonstration

Wavelength (nm)

600

600

One more thing: Additive amount

Observation

- There exists a 'HDT content window'
- Under excess HDT content, the passivation effect was

compensated by other factor(s)

One more thing: Additive amount

Observation

Excess HDT aggravated structural homogeneity and ultimately resulted in stability mitigation

Device demonstration

Observation

Excess HDT aggravated the performance of light-emitting diodes

Conclusion

Effective passivation with planar molecules would require the following:

- HOMO located at the atoms that may interact with the perovskite surface
- Those atoms spaced by the proper distance dictated by the crystal structure
- An appropriate amount that would not damage the structural integrity

Thank you for your attention

MinJae Kim, Himchan Cho* Department of Materials Science and Engineering, KAIST

Appendix I: Oxygen atom effect

J. Mol. Struct. 380.1-2 (1996): 1-14.

Appendix II. PPE and ABN: Geometrical effect

Appendix III: More on the geometrical effect

Appendix IV. Hydantoin demonstration

